SADLER MATHEMATICS SPECIALIST UNIT 2

WORKED SOLUTIONS

Chapter 12 Proof

Exercise 12A

Question 1

If we square any even counting number greater than 2 and the subtract 1, we get a multiple of 5.

 $4^{2} - 1 = 15$ $6^{2} - 1 = 35$ $8^{2} - 1 = 63$

Conjecture is false as shown by last example.

Question 2

The cube of any even integer is always a multiple of 8.

 $2^{3} = 8$ $4^{3} = 64 = 8 \times 8$ $6^{3} = 216 = 27 \times 8$

3 examples appear to support conjecture.

Let an even integer be represented by 2n, where $n \in \mathbb{Z}$. $(2n)^3 = 8n^3$ which is a multiple of three. Conjecture is true.

All multiples of 5 area also multiples of 10.

Conjecture is false as 15 is a multiple of 5 but not a multiple of 10.

Question 4

All right triangles are isosceles.

Conjecture is false as a 3,4 5 triangle is a right angled scalene triangle.

Question 5

If we add together an integer squared, six times the integer and 9 we get a square number.

 $3^{2} + 6(3) + 9 = 36 = 6^{2}$ $4^{2} + 6(4) + 9 = 49 = 7^{2}$ $10^{2} + 6(10) + 9 = 169 = 13^{2}$

3 examples appear to support conjecture.

Let *n* represent an integer, i.e. $n \in \mathbb{Z}$. $n^2 + 6n + 9 = (n+3)^2$ Conjecture is true.

Question 6

The sum of three consecutive positive integers will always be a multiple of 3.

 $3+4+5=12=4\times 3$ $5+6+7=18=6\times 3$ $10+11+12=33=11\times 3$

Let the first number be $n, n \in \mathbb{Z}$. Three consective numbers would be represented by n, n+1 and n+2. n+n+1+n+2 = 3n+3 = 3(n+1)3(n+1) is a multiple of three. Conjecture is true.

© Cengage Learning Australia Pty Ltd 2019

The product of two even numbers is always even.

 $4 \times 6 = 24$ $6 \times 10 = 60$ $8 \times 10 = 80$

3 examples appear to support conjecture.

Let $n, m \in \mathbb{Z}$. 2n and 2m represent even numbers. $2n \times 2m = 4mn = 2(2mn)$ 2(2mn) is a multiple of 2 and therefore even. Conjecture is true.

Question 8

The square of an odd number is always an odd number.

 $5^2 = 25$ $7^2 = 49$ $11^2 = 121$

3 examples appear to support conjecture.

Let 2n+1 represent an odd number, $n \in \mathbb{Z}$. $(2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$. $(2n^2 + 2n) \in \mathbb{Z}$ as $n \in \mathbb{Z}$. $2(2n^2 + 2n) + 1$ is odd as 2 multiplied by any integer add 1 is odd. Conjecture is true.

The product of two consecutive even whole numbers is always a multiple of 8.

 $4 \times 6 = 24 = 3 \times 8$ $10 \times 12 = 120 = 15 \times 8$ $12 \times 14 = 168 = 21 \times 8$

3 examples appear to support conjecture.

Consider consecutive even numbers, 2n & 2(n+1). $2n \times 2(n+1) = 4n(n+1)$

If *n* is even, $n = 2k, k \in \mathbb{Z}$. 4n(n+1) = 4(2k)(2k+1)= 8k(2k+1) which is a multiple of 8.

```
f n isodd, n = 2k + 1, k \in \mathbb{Z}.

4n(n+1)

= 4(2k+1)(2k+1+1)

= 4(2k+1)(2k+2)

= 4(2k+1)2(k+1)

= 8(k+1)(2k+1) which is a multiple of 8.

Conjecture is true.
```

Multiplying any odd counting number by itself and then adding 7 always gives a multiple of 8.

$$5^{2} + 7 = 32 = 4 \times 8$$

 $3^{2} + 7 = 16 = 2 \times 8$
 $9^{2} + 7 = 88 = 11 \times 8$

3 examples appear to support conjecture.

Let 2n + 1 represent any odd counting number, $n \in \mathbb{Z}$, $n \ge 0$. $(2n+1)^2 + 7$ $= 4n^2 + 4n + 8$ = 4n(n+1) + 8

If *n* is even, $n = 2k, k \in \mathbb{Z}, k \ge 0$. 4n(n+1)+8 = 4(2k)(2k+1)+8= 8[(k)(2k+1)+1] which is a multiple of 8.

If *n* is odd, $n = 2k + 1, k \in \mathbb{Z}, k \ge 0$. 4n(n+1)+8 = 4(2k+1)(2k+1+1)+8 = 4(2k+1)(2k+2)+8=8[(k+1)(2k+3)+1] which is a multiple of 8.

Conjecture is true.

a Let
$$x = 0.5555$$

 $10x = 5.5555$
 $9x = 5$
 $x = \frac{5}{9}$
b Let $x = 0.7575$
 $100x = 75.7575$
 $99x = 75$
 $x = \frac{75}{99} = \frac{25}{33}$
c Let $x = 0.6363\overline{63}$
 $100x = 63.63\overline{63}$
 $99x = 63$
 $x = \frac{63}{99} = \frac{7}{11}$
d Let $x = 2.231\overline{231}$
 $1000x = 2231.\overline{231}$
 $999x = 2229$
 $x = \frac{2229}{999} = \frac{743}{333}$
e Let $x = 0.231444$
 $10000x = 231.444$
 $10000x = 2314.444$
 $9000x = 2083$
 $x = \frac{2083}{9000}$

Assume that $\sqrt{2}$ is rational

i.e. $\sqrt{2}$ can be expressed in the form $\frac{a}{b}$, $a, b \in \mathbb{Z}, b \neq 0$ with a and b being co-prime.

$$\sqrt{2} = \frac{a}{b}$$
$$2 = \frac{a^2}{b^2}$$
$$2b^2 = a^2$$

 a^2 is even therefore *a* is even. We can then write $a = 2k, k \in \mathbb{Z}$

$$a2 = (2k)2 = 2b2$$
$$4k2 = 2b2$$
$$2k2 = b2$$

 b^2 is even therefore b is even.

However, if *a* and *b* are both even, they have a common factor of 2 and we have a contradiction to our initial assumption that *a* and *b* are co-prime.

Our assumption that $\sqrt{2}$ is rational must be false, hence $\sqrt{2}$ is irrational.

Exercise 12B

Question 1

If the number is even, we can represent it as $2n, n \in \mathbb{Z}$.

$$\left(2n\right)^2 = 4n^2$$

 $4n^2$ is a multiple of 4 and also even.

If the number is odd, we can represent it as $2n + 1, n \in \mathbb{Z}$.

 $(2n+1)^2 = 4n^2 + 4n + 1$ = 4(n² + n) + 1

 $4(n^2 + n) + 1$ is one more than a multiple of 4 and therefore odd.

,

There are five possibilities.

The integer chosen is either a multiple of 5, 1 more than a multiple of 5, 2 more than a multiple of 5, 3 more than a multiple of 5 or four more than a multiple of 5.

If the number chosen is a multiple of 5, we can write $x = 5n, n \in \mathbb{Z}$.

$$(5n)^2 = 25n^2$$
$$= 5(5n^2)$$

The result is a multiple of 5.

If the number chosen is one more than a multiple of 5, we can write $x = 5n+1, n \in \mathbb{Z}$.

$$(5n+1)^2 = 25n^2 + 10n + 1$$

= $5(5n^2 + 2n) + 1$

The result is one more than a multiple of 5.

If the number chosen is two more than a multiple of 5, we can write $x = 5n + 2, n \in \mathbb{Z}$.

$$(5n+2)^2 = 25n^2 + 20n + 4$$

= $5(5n^2 + 4n) + 4$

The result is four more than a multiple of 5.

If the number chosen is three more than a multiple of 5, we can write $x = 5n + 3, n \in \mathbb{Z}$.

$$(5n+3)^2 = 25n^2 + 30n + 9$$

= $5(5n^2 + 6n + 1) + 4$

The result is four more than a multiple of 5.

If the number chosen is four more than a multiple of 5, we can write $x = 5n + 4, n \in \mathbb{Z}$.

$$(5n+4)^2 = 25n^2 + 40n + 16$$

= $5(5n^2 + 8n + 3) + 1$

The result is one more than a multiple of 5.

There are three possibilities.

The integer chosen is either a multiple of 3, 1 more than a multiple of 3 or two more than a multiple of 5.

If the number chosen is a multiple of 3, we can write $x = 3n, n \in \mathbb{Z}$.

$$(3n)^3 = 27n^3$$
$$= 9(3n^3)$$

The result is a multiple of 9.

If the number chosen is one more than a multiple of 3, we can write $x = 3n + 1, n \in \mathbb{Z}$.

$$(3n+1)^3 = 27n^3 + 27n^2 + 9n + 1$$
 (Use CP to expand)
= $9(3n^3 + 3n^2 + n) + 1$

The result is one more than a multiple of 9.

If the number chosen is two more than a multiple of 3, we can write $x = 3n + 2, n \in \mathbb{Z}$.

 $(3n+2)^3 = 27n^3 + 54n^2 + 36n + 8$ (Use CP to expand) = $9(3n^3 + 6n^2 + 4n + 1) - 1$

The result is one less than a multiple of 9.

There are two possibilities, the term is either even or odd.

If the term is even, we can write

$$T_n = 2k, k \in \mathbb{Z}^+.$$

 $T_{n+1} = 3T_n + 2$
 $= 3(2k) + 2$
 $= 6k + 2$
 $= 2(3k + 1)$

 T_{n+1} is also even.

If the term is odd, we can write

$$T_n = 2k + 1, k \in \mathbb{Z}^+.$$

$$T_{n+1} = 3T_n + 2$$

$$= 3(2k + 1) + 2$$

$$= 6k + 5$$

$$= 2(3k + 2) + 1$$

 T_{n+1} is also odd.

For this sequence, the next term will have the same parity as the term it follows.

There are five possibilities. The integer chosen, x, is either a multiple of 5, 1 more than a multiple of 5, 2 more than a multiple of 5 or four more than a multiple of 5.

$$(x^{5}-x) = x(x-1)(x+1)(x^{2}+1)$$

As long as one of the factors is a multiple of 5, the product is also a multiple of 5.

If x is a multiple of 5, then we can write

$$x = 5n, n \in \mathbb{Z}.$$

(x⁵ - x)
= x(x-1)(x+1)(x²+1)
= 5n(5n-1)(5n+1)((5n)²+1) which is a multiple of 5.

If *x* is one more than a multiple of 5, then we can write

$$x = 5n + 1, n \in \mathbb{Z}.$$

$$(x^{5} - x)$$

$$= x(x-1)(x+1)(x^{2}+1)$$

$$= (5n+1)(5n+1-1)(5n+1+1)((5n+1)^{2}+1)$$

$$= (5n+1)(5n)(5n+2)((5n+1)^{2}+1)$$

$$= 5n(5n+1)(5n+2)((5n+1)^{2}+1) \text{ which is a multiple of 5}$$

If x is two more than a multiple of 5, then we can write

$$x = 5n + 2, n \in \mathbb{Z}.$$

$$(x^{5} - x)$$

$$= x(x-1)(x+1)(x^{2}+1)$$

$$= (5n+2)(5n+2-1)(5n+2+1)((5n+2)^{2}+1)$$

$$= (5n+2)(5n+1)(5n+3)(25n^{2}+20n+4+1)$$

$$= (5n+2)(5n+1)(5n+3)(25n^{2}+20n+5)$$

$$= 5(5n^{2}+4n+1)(5n+2)(5n+1)(5n+3)$$
 which is a multiple of 5.

If *x* is three more than a multiple of 5, then we can write

$$x = 5n + 3, n \in \mathbb{Z}.$$

$$(x^{5} - x)$$

$$= x(x-1)(x+1)(x^{2}+1)$$

$$= (5n+3)(5n+3-1)(5n+3+1)((5n+3)^{2}+1)$$

$$= (5n+3)(5n+2)(5n+4)(25n^{2}+30n+9+1)$$

$$= (5n+2)(5n+1)(5n+3)(25n^{2}+30n+10)$$

$$= 5(5n^{2}+6n+2)(5n+2)(5n+1)(5n+3)$$
 which is a multiple of 5.

If x is four more than a multiple of 5, then we can write $x = 5n + 4, n \in \mathbb{Z}$. $(x^5 - x)$ $= x(x-1)(x+1)(x^2+1)$ $= (5n+4)(5n+4-1)(5n+4+1)((5n+4)^2+1)$ $= (5n+4)(5n+3)(5n+5)((5n+4)^2+1)$ $= 5(n+1)(5n+4)(5n+3)((5n+4)^2+1)$ which is a multiple of 5.

For integer x > 1, $x^5 - x$ is always a multiple of 5.

If x is even, then $x^5 - x$ has a factor of 5 and a factor of 2 and is therefore a multiple of 10.

x, x+1 and x+2 are consecutive numbers. If x is odd, x+1 is even and again, $x^5 - x$ has a factor of 5 and a factor of 2 and is therefore a multiple of 10.

To be a multiple of 20 we require a multiple of 5 and two even numbers as factors $(20 = 2 \times 2 \times 5)$ If x is even, then all the other factors of $x^5 - x$ are odd. We only have one even factor and therefore $x^5 - x$ cannot be a multiple of 20.

If x is odd, then x-1 and x+1 are even. We then have two even factors and a multiple of 5 and therefore $x^5 - x$ is a multiple of 20.

There are seven possibilities. The integer chosen, x, is either a multiple of 7, 1 more than a multiple of 7, 2 more than a multiple of 7, 3 more than a multiple of 7, four more than a multiple of 7, five more than a multiple of 7 or 6 more than a multiple of 7.

$$(x^{7} - x) = x(x-1)(x+1)(x^{2} + x+1)(x^{2} - x+1)$$

As long as one of the factors is a multiple of 7, the product is also a multiple of 7.

If *x* is a multiple of 7, we can write $x = 7n, n \in \mathbb{Z}$.

As x = 7n, we have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

If *x* is one more than a multiple of 7, we can write it as $7n+1, n \in \mathbb{Z}$.

As
$$x = 7n+1$$
, $(x-1) = (7n+1-1) = 7n$.

We have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

If *x* is two more than a multiple of 7, we can write it $x = 7n + 2, n \in \mathbb{Z}$.

As
$$x = 7n + 2$$
, $(x^2 + x + 1) = (7n + 2)^2 + (7n + 2) + 1$
= $49n^2 + 35n + 7$
= $7(7n^2 + 5n + 1)$

We have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

If x is three more than a multiple of 7, we can write
$$x = 7n + 3, n \in \mathbb{Z}$$

As $x = 7n + 3, (x^2 - x + 1) = (7n + 3)^2 - (7n + 3) + 1$
 $= 49n^2 + 35n + 7$
 $= 7(7n^2 + 5n + 1)$

We have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

If *x* is four more than a multiple of 7, we can write it as $7n + 4, n \in \mathbb{Z}$.

As
$$x = 7n + 4$$
, $(x^2 + x + 1) = (7n + 4)^2 + (7n + 4) + 1$
= $49n^2 + 56n + 21$
= $7(7n^2 + 8n + 3)$

We have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

© Cengage Learning Australia Pty Ltd 2019

If *x* is five more than a multiple of 7, we can write it as $7n+5, n \in \mathbb{Z}$.

As
$$x = 7n + 5$$
, $(x^2 - x + 1) = (7n + 5)^2 - (7n + 5) + 1$
= $49n^2 + 63n + 21$
= $7(7n^2 + 9n + 3)$

We have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

If *x* is six more than a multiple of 7, we can write it as $7n + 6, n \in \mathbb{Z}$.

As
$$x = 7n + 6, x + 1 = 7n + 6 + 1$$

= $7n + 7$
= $7(n+1)$

We have a factor that is a multiple of 7, so $x^7 - x$ is a multiple of 7.

Hence $x^7 - x$ is always a multiple of 7 for x > 1.

No John's conjecture is not correct.

 $6^3 - 6 = 210$

210 is not a multiple of 12.

$$x^{3} - x = x(x^{2} - 1)$$

= $x(x-1)(x+1)$

In any three consecutive integers, there is a multiple of three and one even number which means the product is always a multiple of 6.

There are three possibilities for the first integer x. The integer chosen, x, is either a multiple of 3, 1 more than a multiple of 3 or 2 more than a multiple of 3.

If *x* is a multiple of 3, we can write $x = 3n, n \in \mathbb{Z}$.

If x = 3n,

x(x-1)(x+1) = 3n(3n-1)(3n+1).

We have a factor which is a multiple of three and one of the three numbers is also an even number, therefore x(x-1)(x+1) is a multiple of 6.

If *x* is one more than a multiple of 3, we can write $x = 3n+1, n \in \mathbb{Z}$.

If x = 3n + 1, x(x-1)(x+1) = (3n+1)(3n+1-1)(3n+1+1)= (3n+1)3n(3n+2)

We have a factor which is a multiple of three and one of the three numbers is also an even number, therefore x(x-1)(x+1) is a multiple of 6.

If *x* is two more than a multiple of 3, we can write $x = 3n + 2, n \in \mathbb{Z}$.

If x = 3n + 2, x(x-1)(x+1) = (3n+2)(3n+2-1)(3n+2+1) = (3n+2)(3n+1)(3n+3)= 3(n+1)(3n+1)(3n+2)

We have a factor which is a multiple of three and one of the three numbers is also an even number, therefore x(x-1)(x+1) is a multiple of 6.

RTP: $1+2+3+4+...+n = \frac{1}{2}n(n+1), \quad \forall n \in \mathbb{Z}, n \ge 1.$ When n = 1: LHS = 1 RHS= $\frac{1}{2} \times 1 \times 2 = 1$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$1+2+3+4+...+n = \frac{1}{2}k(k+1), \quad \forall k \in \mathbb{Z}, k \ge 1$$

When
$$n = k + 1$$
, RHS $= \frac{1}{2}(k + 1)(k + 2)$
LHS $= 1 + 2 + 3 + 4 + ... + k + (k + 1)$
 $= \frac{1}{2}k(k + 1) + (k + 1)$
 $= (k + 1)(\frac{1}{2}k + 1)$
 $= \frac{1}{2}(k + 1)(k + 2)$
 $= RHS$

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction, $1+2+3+4+...+n = \frac{1}{2}n(n+1)$, $\forall n \in \mathbb{Z}, n \ge 1$.

RTP:
$$1 \times 2 + 2 \times 3 + 3 \times 4 + ... + n(n+1) = \frac{n}{3}(n+1)(n+2), \quad \forall n \in \mathbb{Z}, n \ge 1.$$

When n = 1

LHS:
$$1 \times (1+1) = 2$$

RHS: $\frac{1}{3}(1+1)(1+2) = 2$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + k(k+1) = \frac{k}{3}(k+1)(k+2), \quad \forall k \in \mathbb{Z}, k \ge 1.$$

When n = k + 1, RHS= $\frac{k+1}{3}(k+2)(k+3)$ LHS= $1 \times 2 + 2 \times 3 + ... + k(k+1) + (k+1)(k+2)$ $= \frac{k}{3}(k+1)(k+2) + (k+1)(k+2)$ $= (k+1)(k+2)(\frac{k}{3}+1)$ $= \frac{1}{3}(k+1)(k+2)(k+3)$ =RHS

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction

$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) = \frac{n}{3}(n+1)(n+2), \qquad \forall n \in \mathbb{Z}, n \ge 1.$$

RTP: $2+4+8+...+2^{n} = 2^{n+1}-2$, $\forall n \in \mathbb{Z}, n \ge 1..$ When n = 1: LHS = 2 RHS= $2^{1+1}-2=2$ The initial case is true. Assume the statement is true for n = k. i.e. $2+4+8+...+2^{k} = 2^{k+1}-2$, $\forall k \in \mathbb{Z}, k \ge 1$. When n = k + 1, RHS = $2^{k+1+1}-2 = 2^{k+2}-2$ LHS = $2+4+8+...+2^{k}+2^{k+1}$ $= 2^{k+1}-2+2^{k+1}$ $= 2(2^{k+1})-2$ $= 2^{k+2}-2$ = RHS

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction $2 + 4 + 8 + ... + 2^n = 2^{n+1} - 2$, $\forall n \in \mathbb{Z}, n \ge 1$.

RTP:
$$1^{3} + 2^{3} + 3^{3} + ...n^{3} = \frac{n^{2}}{4}(n+1)^{2}, \quad \forall n \in \mathbb{Z}, n \ge 1.$$

When $n = 1$:
LHS = $1^{3} = 1$
RHS= $\frac{1^{2}}{4}(1+1)^{2} = 1$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$1^{3} + 2^{3} + 3^{3} + \dots k^{3} = \frac{k^{2}}{4}(k+1)^{2}, \qquad \forall k \in \mathbb{Z}, k \ge 1.$$

When $n = k+1$, RHS= $\frac{(k+1)^{2}}{4}(k+2)^{2}$
LHS = $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$
 $= \frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3}$
 $= \frac{(k+1)^{2}}{4}(k^{2} + 4(k+1))$
 $= \frac{(k+1)^{2}}{4}(k^{2} + 4k + 4)$
 $= \frac{(k+1)^{2}}{4}(k+2)^{2}$
 $= RHS$

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction $1^3 + 2^3 + 3^3 + \dots n^3 = \frac{n^2}{4}(n+1)^2$, $\forall n \in \mathbb{Z}, n \ge 1$.

```
a RTP: 1+3+5+...+(2n-1)=n^2, \forall n \in \mathbb{Z}, n \ge 1.
```

When n = 1:

LHS = 1^{3} =1

$$RHS = 1^2 = 1$$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$1+3+5+...+(2k-1) = k^2$$
, $\forall k \in \mathbb{Z}, k \ge 1$.
When $n = k+1$, RHS= $(k+1)^2$
LHS = $1+3+5+...+2k-1+(2(k+1)-1)$
 $= k^2+(2k+1)$
 $= (k+1)^2$

$$=$$
 RHS

b If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction $1 + 3 + 5 + ... + (2n-1) = n^2$, $\forall n \in \mathbb{Z}, n \ge 1$.

RTP:
$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$
, $\forall n \in \mathbb{Z}, n \ge 1$.
When $n = 1$:
LHS $= \frac{1}{2}$
RHS $= \frac{2^1 - 1}{2^1} = \frac{1}{2}$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$+\frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k} = \frac{2^k - 1}{2^k}, \quad \forall k \in \mathbb{Z}, k \ge 1.$$

When $n = k + 1$, $\text{RHS} = \frac{2^{k+1} - 1}{2^{k+1}}$
 $\text{LHS} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}}$
 $= \frac{2^k - 1}{2^k} + \frac{1}{2^{k+1}}$
 $= \frac{2(2^k - 1) + 1}{2^{k+1}}$
 $= \frac{2^{k+1} - 2 + 1}{2^{k+1}}$
 $= \frac{2^{k+1} - 1}{2^{k+1}}$
 $= \text{RHS}$

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when
$$n = 1$$
, by induction $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$, $\forall n \in \mathbb{Z}, n \ge 1$.

RTP:
$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \quad \forall n \in \mathbb{Z}, n \ge 1.$$

When n = 1:

LHS
$$=\frac{1}{2}$$

 $RHS = \frac{1}{1+1} = \frac{1}{2}$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}, \quad \forall k \in \mathbb{Z}, k \ge 1.$$

When
$$n = k + 1$$
, RHS= $\frac{k+1}{k+2}$
LHS = $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + ... + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$
= $\frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$
= $\frac{k(k+2)+1}{(k+1)(k+2)}$
= $\frac{k^2 + 2k + 1}{(k+1)(k+2)}$
= $\frac{(k+1)^2}{(k+1)(k+2)}$
= $\frac{(k+1)}{(k+2)}$
= RHS

If the statement is true when n = k, it is also true for n = k + 1. Given that is true when n=1, by induction, $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$, $\forall n \in \mathbb{Z}, n \ge 1$.

RTP:
$$1 \times 3 \times 5 + 2 \times 4 \times 6 + ... + n(n+2)(n+4) = \underline{n(n+1)(n+4)(n+5)}_{4}$$
 $\forall n \in \mathbb{Z}, n \ge 1.$

When n = 1:

LHS =15

$$RHS = \frac{1 \times 2 \times 5 \times 6}{4} = 15$$

The initial case is true.

Assume the statement is true for n = k.

i.e.
$$1 \times 3 \times 5 + 2 \times 4 \times 6 + \dots + k(k+2)(k+4) = \frac{k(k+1)(k+4)(k+5)}{4}$$
 $\forall k \in \mathbb{Z}, k \ge 1.$

When
$$n = k + 1$$
, RHS = $(k+1)(k+2)(k+5)(k+6)$
4
LHS = $1 \times 3 \times 5 + 2 \times 4 \times 6 + ... + (k)(k+2)(k+4) + (k+1)(k+3)(k+5)$
= $\frac{k(k+1)(k+4)(k+5)}{4} + (k+1)(k+3)(k+5)$
= $\frac{k(k+1)(k+4)(k+5) + 4(k+1)(k+3)(k+5)}{4}$
= $\frac{(k+1)(k+5)[k(k+4) + 4(k+3)]}{4}$
= $\frac{(k+1)(k+5)[k^2 + 4k + 4k + 12]}{4}$
= $\frac{(k+1)(k+5)[k^2 + 8k + 12]}{4}$
= $\frac{(k+1)(k+5)(k+2)(k+6)}{4}$
= $\frac{(k+1)(k+2)(k+5)(k+6)}{4}$
= RHS

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when
$$n = 1$$
, by induction
 $1 \times 3 \times 5 + 2 \times 4 \times 6 + \dots + n(n+2)(n+4) = \underline{n(n+1)(n+4)(n+5)}_4$ $\forall n \in \mathbb{Z}, n \ge 1.$

© Cengage Learning Australia Pty Ltd 2019

RTP: (x-1) is a factor of $x^n - 1$, $\forall n \in \mathbb{Z}, n \ge 0$.

When n = 1:

LHS x-1 is x^1-1 .

The initial case is true.

Assume the statement is true for n = k.

i.e. $(x^k - 1) = a(x - 1), \quad \forall k \in \mathbb{Z}, n \ge 0.$

When
$$n = k + 1$$
,
 $x^{k+1} - 1$
 $= x^{k} \cdot x - 1$
 $= x(x^{k} - 1) + x - 1$
 $= ax(x - 1) + (x - 1)$ $*x^{k} - 1 = a(x - 1)$
 $= (x - 1)(ax + 1)$

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction (x-1) is a factor of $x^n - 1$, $\forall n \in \mathbb{Z}, n \ge 0$.

RTP: $1 \times 2 \times 3 \times ... \times n \ge 3^n$, $\forall n \in \mathbb{Z}, n > 6$.

When *n* = 6:

LHS = $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = 7! = 5040$ RHS = $3^7 = 2187$ 5040 > 2187

The initial case is true.

Assume the statement is true for n = k.

i.e. $1 \times 2 \times 3 \times \dots \times k \ge 3^k$, $\forall k \in \mathbb{Z}, n > 6$. If $k! \ge 3^k$ then $3k! \ge 3^k \cdot 3$ i.e. $3k! \ge 3^{k+1}$

Similarly $k!(k+1) \ge 3^{k}(k+1)$ and as k+1 > 3, $k!(k+1) \ge 3k! \ge 3^{k+1}$

hence $k!(k+1) \ge 3^{k+1}$

Alternatively

 $3^{k+1} < 3^k (k+1)$ as it requires multiplication by a number greater than one for

$$3^{k} (k+1) = 3^{k+1} \frac{(k+1)}{3} \text{ to be true.}$$

When $n = k+1$
$$1 \times 2 \times 3 \times \dots \times k \times (k+1) \ge 3^{k} (k+1)$$

$$3^{k} (k+1) = 3^{k} \times 3 \times \frac{(k+1)}{3}$$

$$= 3^{k+1} \frac{(k+1)}{3}$$

When $n > 6$,
$$\frac{k+1}{3} > 1$$

$$\therefore 3^{k} (k+1) > 3^{k+1}$$

© Cengage Learning Australia Pty Ltd 2019

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n > 6, by induction $1 \times 2 \times 3 \times ... \times n \ge 3^n$, $\forall n \in \mathbb{Z}, n > 6$.

Question 11

RTP: $7^n + 2 \times 13^n$ is a multiple of three $\forall n \in \mathbb{Z}, n \ge 0$. When n = 0: LHS $1 + 2 \times 1 = 3$ The initial case is true. Assume the statement is true for n = k. $7^k + 2 \times 13^k$ is a multiple of three $\forall k \in \mathbb{Z}, k \ge 0.$ i.e. If $7^k + 2 \times 13^k$ is a multiple of three, we can write $7^k + 2 \times 13^k = 3M, M \in \mathbb{Z}$ When n = k + 1 $7^{k+1} + 2 \times 13^{k+1}$ $=7^{k}.7+2\times13^{k}.13$ $=7^{k}.7+2.13^{k}.(7+6)$ $=7^{k}.7+14.13^{k}+12.13^{k}$ $=7(7^{k}+2.13^{k})+12.13^{k}$ $=7.3M+12.13^{k}$ $=3(7M+4.13^{k})$ which is a multiple of three.

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 0, by induction $7^n + 2 \times 13^n$ is a multiple of three $\forall n \in \mathbb{Z}, n \ge 0$.

An alternative approach:

If $7^{k} + 2 \times 13^{k}$ is a multiple of three, we can write $7^{k} + 2 \times 13^{k} = 3M, M \in \mathbb{Z}$ $\Rightarrow 7^{k} = 3M - 2.13^{k}$ When n = k + 1 $7^{k+1} + 2 \times 13^{k+1}$ $= 7^{k} \cdot 7 + 2 \times 13^{k+1}$ $= 7(3M - 2.13^{k}) + 2 \times 13^{k} \cdot 13$ $= 21M - 14 \cdot 13^{k} + 26 \cdot 13^{k}$ $= 21M + 12 \cdot 13^{k}$ $= 3(7M + 4 \cdot 13^{k})$ which is a multiple of three.

RTP:
$$2-4+8+...+(-1)^{n+1}2^n = \frac{2}{3}(1+(-1)^{n+1}2^n), \quad \forall n \in \mathbb{Z}, n \ge 1.$$

When n = 1:

LHS =
$$(-1)^{1+1} 2^{1} = 2$$

RHS = $\frac{2}{3} (1 + (-1)^{1+1} 2^{1}) = 2$

The initial case is true.

Assume the statement is true for n = k.

$$2-4+8+\ldots+(-1)^{k+1}2^{k}=\frac{2}{3}\left(1+(-1)^{k+1}2^{k}\right), \quad \forall k\in\mathbb{Z}, \ k\geq 1.$$

When
$$n = k + 1$$

RHS =
$$\frac{2}{3} (1 + (-1)^{k+2} 2^{k+1})$$

LHS = 2-4+8....+
$$(-1)^{k+1} 2^{k} + (-1)^{k+2} 2^{k+1}$$

= $\frac{2}{3} (1 + (-1)^{k+1} 2^{k}) + (-1)^{k+2} 2^{k+1}$
= $\frac{2}{3} [1 + (-1)^{k+1} 2^{k} + \frac{3}{2} (-1)^{k+2} 2^{k+1}]$
= $\frac{2}{3} [1 + \frac{(-1)^{k+1} 2^{k} (-1) 2}{(-1) 2} + \frac{3}{2} (-1)^{k+2} 2^{k+1}]$
= $\frac{2}{3} [1 - \frac{(-1)^{k+2} 2^{k+1}}{2} + \frac{3}{2} (-1)^{k+2} 2^{k+1}]$
= $\frac{2}{3} [1 + (-1)^{k+2} 2^{k+1}]$
= RHS

If the statement is true when n = k, it is also true for n = k + 1.

Given that is true when n = 1, by induction $2 - 4 + 8 + ... + (-1)^{n+1} 2^n = \frac{2}{3} (1 + (-1)^{n+1} 2^n), \quad \forall n \in \mathbb{Z}, n \ge 1.$

Miscellaneous exercise twelve

Question 1

- **a** Cannot be determined number of columns in matrix 1 does not equal the number of rows in matrix 2.
- $\mathbf{b} \qquad \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$ $\mathbf{c} \qquad \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 3 & -3 \\ -3 & 3 & -3 \end{bmatrix}$
- **d** Cannot be determined number of columns in matrix 1 does not equal the number of rows in matrix 2.
- $\mathbf{e} \qquad \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 6 & 5 & 4 \end{bmatrix}$

$$A^{-1} = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} 13 \\ -4 \end{bmatrix}$$

$$A^{-1}AB = A^{-1} \begin{bmatrix} 13 \\ -4 \end{bmatrix}$$

$$B = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ -4 \end{bmatrix}$$

$$B = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ -4 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$AC = \begin{bmatrix} 13 \\ 6 \end{bmatrix}$$

$$C = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ 6 \end{bmatrix}$$

$$C = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ 6 \end{bmatrix}$$

$$C = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ 6 \end{bmatrix}$$

$$DA = \begin{bmatrix} 6 & 19 \end{bmatrix}$$

$$DAA^{-1} = \begin{bmatrix} 6 & 19 \end{bmatrix} A^{-1}$$

$$= \frac{1}{5} \begin{bmatrix} 6 & 19 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 4 \end{bmatrix}$$

$$EA = \begin{bmatrix} 5 & 0 \end{bmatrix}$$

$$EAA^{-1} = \begin{bmatrix} 5 & 0 \end{bmatrix} A^{-1}$$

$$= \frac{1}{5} \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -3 \end{bmatrix}$$

$$AC = B$$

$$C = A^{-1}B$$

$$A^{-1} = \frac{1}{11} \begin{bmatrix} 4 & -3 \\ 1 & 2 \end{bmatrix}$$

$$C = \frac{1}{11} \begin{bmatrix} 4 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 21 \\ 9 & 17 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 3 \\ 2 & 5 \end{bmatrix}$$

Question 4

a Given
$$X_{2\times 2}$$
, $Y_{2\times 1}$ and $Z_{1\times 2}$ the only possibilities are XY and ZX.

b ZX

c
$$ZX = \begin{bmatrix} 210 & 120 \end{bmatrix} \begin{bmatrix} 75 & 25 \\ 20 & 80 \end{bmatrix}$$
$$= \begin{bmatrix} 210 \times 75 + 120 \times 20 & 210 \times 25 + 120 \times 80 \end{bmatrix}$$
$$= \begin{bmatrix} 18150 & 14850 \end{bmatrix}$$

18 150 Australian Stamps and 14 850 stamps from the Rest of the World required to fill these requests.

$$A^{2} = \begin{bmatrix} x & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x & 1 \\ 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} x^{2} & x+3 \\ 0 & 9 \end{bmatrix}$$
$$A^{2} + A = \begin{bmatrix} x^{2} & x+3 \\ 0 & 9 \end{bmatrix} + \begin{bmatrix} x & 1 \\ 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} x^{2} + x & x+4 \\ 0 & 12 \end{bmatrix}$$
$$\begin{bmatrix} 6 & x^{2} - 8 \\ p & q \end{bmatrix} = \begin{bmatrix} x^{2} + x & x+4 \\ 0 & 12 \end{bmatrix}$$
$$x^{2} + x = 6 \qquad x^{2} - 8 = x + 4$$
$$x^{2} + x - 6 = 0 \qquad x^{2} - x - 12 = 0$$
$$(x+3)(x-2) = 0 \qquad (x-4)(x+3) = 0$$
$$x = -3, 2 \qquad x = -3, 4$$
$$\Rightarrow x = -3, p = 0, q = 12$$

Question 6

$$RHS = \frac{2 \tan \theta}{\tan^2 \theta + 1}$$
$$= \frac{2 \tan \theta}{\sec^2 \theta}$$
$$= 2 \times \frac{\sin \theta}{\cos \theta} \div \frac{1}{\cos^2 \theta}$$
$$= 2 \times \frac{\sin \theta}{\cos \theta} \times \cos^2 \theta$$
$$= 2 \sin \theta \cos \theta$$
$$= \sin 2\theta$$
$$= LHS$$

LHS = sin 5x cos 3x - cos 6x sin 2x

$$= \frac{1}{2} (\sin 8x + \sin 2x) - \frac{1}{2} (\sin 8x - \sin 4x)$$

$$= \frac{1}{2} (\sin 8x + \sin 2x - \sin 8x + \sin 4x)$$

$$= \frac{1}{2} (\sin 4x + \sin 2x)$$

$$= \frac{1}{2} (2 \sin 3x \cos x)$$

$$= \sin 3x \cos x$$

$$= \text{RHS}$$

Question 8

a $R \cos(\theta + \alpha) = R \cos \theta \cos \alpha - R \sin \theta \sin \alpha$ $5 \cos \theta - 3 \sin \theta = R \cos \theta \cos \alpha - R \sin \theta \sin \alpha$ $R \cos \alpha = 5$ $R \sin \alpha = 3$ $\cos \alpha = \frac{5}{R}$ $\sin \alpha = \frac{3}{R}$ $\tan \alpha = \frac{3}{5}$ $\alpha = 0.54 \text{ radians}$ $R = \sqrt{5^2 + 3^2}$ $= \sqrt{34}$ $5 \cos \theta - 3 \sin \theta = \sqrt{34} \cos(\theta + 0.54)$ **b** $\cos(\theta + 0.54) \text{ has a minimum value of } -1$ $\sqrt{34} \cos(\theta + 0.54) \text{ has a minimum value of } -\sqrt{34}$

$$\cos(\theta + 0.54) = -1$$
$$\theta + 0.54 = \pi$$
$$\theta = 2.60 \text{ radians}$$

 $\begin{array}{ccc} A_{3\times 1} & B_{2\times 3} & C_{1\times 4} \\ B_{2\times 3}A_{3\times 1}C_{1\times 4} \\ \end{array}$ BAC is the order of multiplication $\begin{bmatrix} 10 & 0 & 10 & 10 \end{bmatrix}$

 $BAC = \begin{bmatrix} 10 & 0 & 10 & 10 \\ 8 & 0 & 8 & 8 \end{bmatrix}$

Question 10

$$A^{2} = \begin{bmatrix} 2x & x \\ 4 & y \end{bmatrix} \begin{bmatrix} 2x & x \\ 4 & y \end{bmatrix}$$
$$= \begin{bmatrix} 4x^{2} + 4x & 2x^{2} + xy \\ 8x + 4y & 4x + y^{2} \end{bmatrix} = \begin{bmatrix} 24 & p \\ 0 & q \end{bmatrix}$$
$$\begin{bmatrix} 4x^{2} + 4x & 2x^{2} + xy \\ 8x + 4y & 4x + y^{2} \end{bmatrix} = \begin{bmatrix} 24 & p \\ 0 & q \end{bmatrix}$$
$$4x^{2} + 4x = 24$$
$$4x^{2} + 4x = 24$$
$$4x^{2} + 4x - 24 = 0$$
$$x^{2} + x - 6 = 0$$
$$(x + 3)(x - 2) = 0$$
$$x = -3, 2$$
If $x = -3$
$$8x + 4y = 0$$
$$16 + 4y = 0$$
$$y = -4$$
If $x = -3$
$$8x + 4y = 0$$
$$16 + 4y = 0$$
$$y = -4$$
$$y = 6$$
$$p = 2x^{2} + xy$$
$$= 2(2)^{2} + 2(-4)$$
$$= 2(-3)^{2} + (-3) \times 6$$
$$= 0$$
$$q = 4x + y^{2}$$
$$= 4(2) + (-4)^{2}$$
$$= 24$$
$$= 24$$

There is no conflict as the argument is correct provided A^{-1} exists.

 A^{-1} only exists if A is a square matrix.

Question 12

$A_{2\times 3}$	$\mathbf{B}_{1 \times 3}$	$C_{3 \times 1}$	$D_{3\times3}$
ЪА́	BA	ÇÁ	DA
ĂВ	₿₿	CB	DB
AC	BC	ÇĆ	DC
AD	BD	ÇĎ	DD
AC, A	D, BC,	BD, CI	B, DC and DD are the only possible products.

Question 13

[1	3]	[2	2	4		2	11	13	
0	1	0	3	3_	=	0	3	3	
A'(2, 0) B' (11, 3) C' (13, 3)									

LHS = sec x cosec x cot x

$$= \frac{1}{\cos x} \times \frac{1}{\sin x} \times \frac{\cos x}{\sin x}$$

$$= \frac{1}{\sin^2 x}$$

$$= \cos^2 x$$

$$= 1 + \cot^2 x$$

$$= RHS$$

Question 15

 $R\sin(\theta + \alpha) = R\sin x \cos \alpha + R\cos x \sin \alpha$ $7\sin x + \cos x = R\sin x \cos \alpha + R\cos x \sin \alpha$ $R\cos \alpha = 7$ $R\sin \alpha = 1$ $\cos \alpha = \frac{7}{R}$ $\sin \alpha = \frac{1}{R}$ $\tan \alpha = \frac{1}{7}$ $\alpha = 0.14$ $R = \sqrt{7^2 + 1^2}$ $= \sqrt{50}$ $= 5\sqrt{2}$ $7\sin x + \cos x = 5\sqrt{2}\sin(x + 0.14) = 5$ $\sin(x + 0.14) = \frac{1}{\sqrt{2}}$ $x + 0.14 = \frac{\pi}{4}, \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}$ $x = \begin{cases} 0.64 \\ 2.21 \end{cases}$

RTP: $12+19+31+...+(5(1+2^{n-1})+2n) = n(n+6)+5(2^n-1) \quad \forall n \in \mathbb{Z}, n \ge 1$

When n = 1

LHS = $(5(1+2^{\circ})+2(1)) = 12$ RHS = $1(1+6) + 5(2^{1}-1) = 12$

The statement is true for the initial case.

Assume the statement is true for n = k

 $12+19+31+\ldots+(5(1+2^{k-1})+2k)=k(k+6)+5(2^k-1) \quad \forall k \in \mathbb{Z}, k \ge 1$

When n = k + 1

$$12 + 19 + 31 + \dots + (5(1 + 2^{k-1}) + 2k) + (5(1 + 2^{k+1-1}) + 2(k+1))$$

= $k(k+6) + 5(2^{k} - 1) + (5(1 + 2^{k+1-1}) + 2(k+1))$
= $k(k+6) + 5.2^{k} - 5 + 5 + 5.2^{k} + 2k + 2$
= $k(k+6) + 2 \times 5.2^{k} - 5 + 5 + 2k + 2$
= $k(k+6) + 5.2^{k+1} - 5 + 2k + 7$
= $k^{2} + 6k + 5(2^{k+1} - 1) + 2k + 7$
= $k^{2} + 8k + 7 + 5(2^{k+1} - 1)$
= $(k+1)(k+7) + 5(2^{k+1} - 1)$

If the statement is true for n = k then it is also true for n = k + 1. The statement is true for n = 1 so by the principles of mathematical induction, the statement is true for $n \ge 1$.

RTP: $3^{2n+4} - 2^{2n} = 5M, M \in \mathbb{Z} \quad \forall n \in \mathbb{Z}, n \ge 1$ When n = 1 $3^{2(1)+4} - 2^{2(1)}$ $= 3^{6} - 2^{2}$ = 725725 is a multiple of 5 so the statement is true for the initial case.

Assume the statement is true for n = k i.e.

$$3^{2k+4} - 2^{2k} = 5M, M \in \mathbb{Z} \ \forall k \in \mathbb{Z}, k \ge 1$$

```
When n = k + 1

3^{2(k+1)+4} - 2^{2(k+1)}
= 3^{2k+4+2} - 2^{2k+2}
= 3^{2} \times 3^{2k+4} - 2^{2} \times 2^{2k}
= 9 \times 3^{2k+4} - 4 \times 2^{2k}
= 5 \times 3^{2k+4} + 4 \times 3^{2k+4} - 4 \times 2^{2k}
= 5 \times 3^{2k+4} + 4(3^{2k+4} - 2^{2k})
= 5 \times 3^{2k+4} + 4 \times 5M
= 5(3^{2k+4} + 4M) which is clearly a multiple of 5
```

If the statement is true for n = k then it is also true for n = k + 1. The statement is true for n = 1 so by the principles of mathematical induction, the statement is true for all positive integer *n*.

RTP: $5^n + 7 \times 13^n = 8M, M \in \mathbb{Z} \quad \forall n \in \mathbb{Z}, n \ge 1$

When n = 1

 $5^1 + 7 \times 13^1 = 96$

96 is a multiple of 8 so the statement is true for the initial case.

Assume the statement is true for n = k i.e.

 $5^k + 7 \times 13^k = 8M, M \in \mathbb{Z}, \forall k \in \mathbb{Z}, k \ge 1$

When n = k + 1

 $5^{k+1} + 7 \times 13^{k+1}$ = 5.5^k + 7 × 13^k.13 = 5 × 5^k + 5 × 7 × 13^k + 8 × 7 × 13^k = 5(5^k + 7 × 13^k) + 8 × 7 × 13^k = 5 × 8M + 8 × 7 × 13^k = 8(5M + 7 × 13^k) which is a multiple of 8.

If the statement is true for n = k then it is also true for n = k + 1. The statement is true for n = 1 so by the principles of mathematical induction, the statement is true for all positive integer $n \ge 1$.

RTP:
$$r + r^2 + r^3 + ... r^n = \frac{r(r^n - 1)}{r - 1} \quad \forall n \in \mathbb{Z}, n \ge 1$$

When n = 1

LHS = r
RHS =
$$\frac{r(r^1 - 1)}{r - 1} = r$$

The statement is true for the initial case.

Assume the statement is true for n = k i.e.

$$r + r^{2} + r^{3} + \dots r^{k} = \frac{r(r^{k} - 1)}{r - 1} \quad \forall k \in \mathbb{Z}, k \ge 1$$

When n = k + 1

$$r + r^{2} + r^{3} + \dots r^{k} + r^{k+1}$$

$$= \frac{r(r^{k} - 1)}{r - 1} + r^{k+1}$$

$$= \frac{r(r^{k} - 1)}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}$$

$$= \frac{r(r^{k} - 1) + r \cdot r^{k}(r - 1)}{r - 1}$$

$$= \frac{r(r^{k} - 1 + r^{k}(r - 1))}{r - 1}$$

$$= \frac{r(r^{k} + r^{k}(r - 1) - 1)}{r - 1}$$

$$= \frac{r(r^{k} (1 + r - 1) - 1)}{r - 1}$$

$$= \frac{r(r^{k} \cdot r - 1)}{r - 1}$$

$$= \frac{r(r^{k+1} - 1)}{r - 1}$$

If the statement is true for n = k then it is also true for n = k+1. The statement is true for n = 1 so by the principles of mathematical induction, the statement is true for all positive integer $n \ge 1$.